# Growing dinoflagellates in the lab



Research Forum

**Dinos at Home** 

Organisms

Photos

Movies

Here are all the instructions you will need for growing temperate-tropical dinoflagellates in a lab.

#### Sources

- isolation of single species from a plankton tow
- ordering from various sources:
  - <u>CCMP</u>
  - 0 <u>UTEX</u>
  - Other Algae Collections
  - o Univ of Utah (CISE)
  - Sunnyside Seafarms (for more info on this source see "<u>Growing dinoflagellates at home</u>")

### **Basic Requirements**

The following is a basic protocol for growing autotrophic, tropical to temperate marine dinoflagellates. We grow <u>our cultures</u> in Percival incubators on 12 hour light-dark cycles set at **18 °C** with light levels at **40-140 µmoles/m<sup>2</sup>-sec** provided by several cool white fluorescent bulbs. The cultures are kept in various-sized, sterile Erlenmeyer flasks, ranging from 250 ml to 2.8 l, using cotton gauze as stoppers. We make **F/2 media** following the recipe from Guillard, R.R.L. and J.H. Ryther (1962), Can. J. Microbiol. 8:229-239. F/2 refers to enriched seawater that has been shown to be the ideal growth medium for phytoplankton. Our cultures are transferred in a sterile environment into new (sterile) F/2 media every 3 weeks (about 1/4 volume of an old culture is used to inoculate a new culture). Cultures are swirled everyday (except on day of transfer) to prevent clumping of cells and to keep nutrients well mixed.

### F/2 Recipe

To 4 I of 0.22  $\mu m$  filtered open ocean seawater (or artificial seawater) add:

- 2 ml 15% NaNO<sub>3</sub>
- 2 ml 1% NaH<sub>2</sub>PO<sub>4</sub>
- 2 ml trace metals stock
- 2 ml vitamin stock
- 10 ml soil extract (re-autoclave after each use)

Fill the various sized flasks each to about 1/2 capacity, then plug them with gauze stoppers and autoclave (steam sterilize) for 20 minutes. Remove F/2 promptly from autoclave (any longer than 20 minutes will cause precipitation). Let sit for 24 hours in incubator to cool.

# Tips if you have problems with precipitation (some precipitation is normal)

- (1) Autoclave for only 20 minutes, with no dry cycle.
- (2) Autoclave just the water, then add supplements.
- (3) Silicon is not required for dinoflagellate cultures.
- (4) Try filter sterilization instead?

## **Stock Solutions**

#### 1. Vitamin Stock Solution

| VITAMINS                | Concentration | to 500 ml of dist. H <sub>2</sub> O add: |
|-------------------------|---------------|------------------------------------------|
| Thiamine                | 1 mg/ml       | 0.5 g                                    |
| Biotin                  | 1 µg/ml       | 0.5 mg                                   |
| Vitamin B <sub>12</sub> | 1 µg/ml       | 0.5 mg                                   |

#### 2. Trace Metals Stock Solution

| METALS                                              | Concentration | to 100 ml of dist. H <sub>2</sub> O add: |
|-----------------------------------------------------|---------------|------------------------------------------|
| FeEDTA                                              | 2.34 mM       | 1000.0 mg                                |
| CuSO <sub>4</sub> •5H <sub>2</sub> O                | 8 µM          | 1.86 mg                                  |
| ZnSO <sub>4</sub> •7H <sub>2</sub> O                | 15.4 mM       | 4.4 mg                                   |
| CoCl <sub>2</sub> •6H <sub>2</sub> O                | 8.6 µM        | 2.0 mg                                   |
| MnCl <sub>2</sub> •4H <sub>2</sub> O                | 184 µM        | 36.0 mg                                  |
| Na <sub>2</sub> MoO <sub>4</sub> •2H <sub>2</sub> O | 5.2 µM        | 1.26 mg                                  |

3. 15% NaNO<sub>3</sub>: 15 g NaNO<sub>3</sub> in 100 ml nanopure dist. H<sub>2</sub>O

4. 1% NaH<sub>2</sub>PO<sub>4</sub>: 1 g NaH<sub>2</sub>PO<sub>4</sub> in 100 ml nanopure dist. H<sub>2</sub>O

#### 5. Soil Extract:

Collect dirt from oaky area or use "rich looking" top soil. Sieve 3-4 handfuls of dirt through a screen. Add dirt to 1 I nanopure dist.  $H_2O$  in a large Erlenmeyer flask. Autoclave 20 minutes. Let sit overnight. Pour off supernatant and centrifuge 10 minutes. Pour supernatant through cheesecloth (Repeat centrifugation and filtering if needed). Divide into subsamples (30-40 ml) and store frozen.

## **Washing Dino Culturing Dishes**

- Day 1: After discarding old cultures, wash the flasks with Liquinox detergent, hot tap water, and a scrub brush. Scrub inside of flask well with brush. Rinse excess soap out with tap water.
- Put one drop of Liquinox in flask and fill to brim with tap water, being careful not to have bubbles around mouth because they will crust. Let flasks soak overnight.
- Day 2: Empty flasks and fill with enough 10% HCl solution to cover typical culture depth in that flask. These flasks should be kept under

#### the fume hood. Let these flasks sit overnight.

• Day 3: Remove the flasks from the acid bath and scrub out any residue using a designated "acid only" brush. Rinse the flasks 10 times with tap water, then 3 times with DI water. Let air dry. Store in a dry place until flasks are used.

#### **Our Cultures**

James Case's lab at UCSB is currently growing:

- Gonyaulax polyedra (aka Lingulodinium polyedrum)
- Pyrocystis fusiformis (picture)
- Pyrocystis lunula
- Glenodinium sp. (not a bioluminescent species)

All of these species grow well under the conditions described on this page.

#### [ Back to top of page ]

E-mail <u>BL Web creator</u>. | <u>Research forum</u> | <u>Bioluminescence Info Page</u>.